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We discover that a eutectic system exhibits pseudobicritical features corresponding to the simultane-
ous birth of two different broken-parity states. The first branch is the known tilted-growth mode, i.e,
global parity breaking; it bifurcates from the usual lamellar symmetric state. At approximately the same
criticial point, a second brach merges close to the second fold we found previously. The two states thus
bifurcate from different basic states. This new branch owes its existence to the underlying degeneracy of
the usual broken-parity state. It consists of a structure where one lamella assumes a right-traveling and
the other a left-traveling state. As a consequence, the drift velocity (or equivalently the tilt angle) is
smaller for the new branch. Close to the bicritical point, the bifurcation is described by a Landau theory
with the tilt angle being the order parameter. From general considerations we can state that the new
branch is locally stable in the kinetic sense, but less stable than the usual branch. This result is con-
sistent with the conventional criterion based on comparison of undercooling, since the new branch has a
higher undercooling. We propose a simple experimental protocol to have access to the new state. Final-
ly, when the two lamellae have equivalent properties (a symmetric case) the new state is not traveling
while each lamella is asymmetric with respect to its center and is a mirror image of the other lamella.
This corresponds to the so-called anomalous cells observed in noneutectic systems. We develop an ana-
lytic theory, in the same spirit as the one used for the parity breaking, to account for the transition to the
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anomalous state. The results are in qualitative agreement with the full numerical calculation.

PACS number(s): 61.50.Cj, 05.70.Fh, 81.30.Fb, 68.70.+w

I. INTRODUCTION

It is well known that directional solidification of nor-
mal binary eutectic systems typically gives rise to lamel-
lar or fibrous structures. Since considerable progress has
been made in the problem of eutectic growth during the
past few years, we briefly recall the main lines of research
and the current state of affairs. In 1966, Jackson and
Hunt (JH) gave a theoretical description of eutectic struc-
tures that has remained a standard reference until today
[1]. They simplified the problem to render it analytically
tractable by replacing the diffusion field in the liquid
phase with that of a planar front. Furthermore, they as-
sumed that the lamellae of the two phases have equal
average undercoolings, which allows the derivation of an
analytic expression for the average undercooling. As a
function of the wavelength, it exhibits a minimum.

It was then tempting to conjecture that the wavelength
associated with this minimum is selected in lamellar
growth. As a heuristic criterion, this hypothesis had
been originally proposed by Zener [2]. Cahn was the first
to point out that a eutectic structure with a wavelength
smaller than the one predicted by this criterion would be
inherently unstable, and the argument was explained in
some detail by JH [1]. Experimentally, the dispersion of
wavelengths in a single eutectic grain is small, so a selec-
tion mechanism might indeed be operative.

Theoretical work following the Jackson-Hunt calcula-
tion first focused on improving the accuracy of the
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description. Nash [3] developed a boundary-integral for-
mulation for the problem but had to introduce various
approximations to make it tractable. Series, Hunt, and
Jackson [4] approached the moving-boundary problem
via construction of an electrostatic analogue made of
resistance paper (with cuts defining the interface shape).
They determined interface shapes in the limit of vanish-
ing Péclet number. Their calculations already hinted at
the fact that symmetric solutions do not exist for arbi-
trarily large wavelengths.

Trivedi, Magnin, and Kurz [5] extended the work of
JH to the limit of large Péclet numbers (rapid
solidification) and discussed the behavior of the minimum
undercooling as a function of velocity. They still as-
sumed local thermal equilibrium at high pulling speeds.
On the other hand, a kinetic term had even earlier been
included into the description of the interface undercool-
ing for isothermal eutectic growth [6,7].

In these analytic approaches the flat interface and
equal undercooling assumptions of JH were used [4-7].
Brattkus et al. [8] recently suggested that the former as-
sumption is justified only for large thermal gradients, that
is, when I} /I << 1, where [ is the diffusion length and I a
thermal length. It turned out from our full calculation,
however, that the JH approximation is valid (in the vicin-
ity of the minimum undercooling) even for /-~ /. Careful
inspection of the equations [9] shows that the appropriate
expansion parameter is A/l;, which is always small, and
not /1 /1 as in Ref. [8]. If one uses huge thermal gradients
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(10° bigger than standard ones), values of order one of
the parameter A /I can be reached and the isothermal as-
sumption ceases to be valid. Besides academic cases
(Ir~A) we can ascertain now that the JH theory de-
scribes remarkably well the symmetric pattern if A is not
too far from the wavelength that provides the minimum
undercooling (but it misses other important features; see
below).

A fundamental question was addressed by Langer [10]
and by Datye and Langer [11], who tried to justify the
minimum undercooling criterion by a stability calcula-
tion, identifying it as the point of marginal stability of the
system. A more recent analysis [12] concludes that a
simplifying assumption used in their calculation is
unjustified in the limit of large thermal gradients, where
the point of minimal undercooling turns out to be stable.
In view of the remark made above, this is not surprising,
since in this limit the very large value of the thermal gra-
dient also invalidates the isothermal assumption assumed
by Langer [10]. We can state, as for the JH theory, that
Langer’s [10] result should describe well phase instability
as long as I >>A, a situation which is always met in ex-
periments. It is, however, important in order to obtain
conclusive answers about the general case to perform a
full treatment of diffusive instabilities [13] at an arbitrary
thermal gradient, along the lines of similar work on
directional solidification of dilute alloys [14].

Also worth mentioning is a numerical simulation of the
eutectic system by Karma [15]. It was based on a
random-walker model and gave the first theoretical evi-
dence for a tilting instability. Karma did not, however,
investigate the nature of the bifurcation nor did he obtain
quantitative results for the tilt angle as a function of sys-
tem parameters. This is quite difficult with his inherently
noisy method.

Interest in the growth of eutectic systems has been re-
vived by experiments [16] and by our recent work
[17-23]. The experiment in question demonstrated
unambiguously that parity-breaking structures similar to
those seen in an earlier experiment on liquid crystals [24]
do exist in the eutectic system (a fact that actually has
been known to metallurgists for some 20 years at least
[25]). With regard to parity breaking in general, the phe-
nomenology of Coullet, Goldstein, and Gunaratne [26]
has constituted a crucial step.

Our research explained the nature of parity breaking
(which is the consequence of a supercritical bifurcation)
and led to the suggestion of new experiments to clarify
this nature [17,20,21], one of which has actually been suc-
cessfully performed meanwhile [27]. Furthermore, it re-
vealed features that go essentially beyond the Jackson-
Hunt theory [18,19,21], such as the existence of a discrete
set of axisymmetric solutions for a given parameter set,
the existence of a fold singularity in the bifurcation dia-
gram at which symmetric solutions cease to exist, or a
novel scaling relation for the selected wavelength both in
untilted and tilted eutectic growth. Follow-up work in-
cluded a numerical confirmation of this scaling relation
for an improved JH-type theory [28], an explanation of
localized tilted domains via the coupling between parity
breaking and the phase of the pattern [29], which we ex-
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tended to the case of anisotropic surface tension [30]. A
dynamical wavelength selection mechanism, suggested by
Coullet, Goldstein, and Gunaratne [26], has meanwhile
also been found in experiments [31].

Another recent development pertains to an analytic
treatment for parity breaking. Except in the situation
where one can model the front dynamics by a two-mode
coupling [32,33]—a situation which holds close to a
codimension-two bifurcation of the planar interface—all
the knowledge on parity breaking came from numerical
calculations. In particular, the eutectic system (which
cannot be modeled by two resonant Fourier modes)
seemed to defy an analytic treatment. Recently, we have
been able [22,23] to develop a successful analytic theory
for the parity-breaking bifurcation which captures the
essential physical features, plus some new developments.

We now turn to the main purpose of the present contri-
bution. In one of our previous investigations [20], we
speculated that there should exist another broken-parity
traveling state in addition to the one we discovered previ-
ously. Meanwhile, we have indeed found a new branch
which merges—within numerical uncertainties—at the
same critical point. Let us recall that the old branch cor-
responds to a profile structure where each lamella as-
sumes the same sign for the antisymmetric part (both
lamellae types would travel in the same direction if each
of those types were alone). Since parity breaking is a
pitchfork bifurcation, there exists a degeneracy corre-
sponding to the fact that right- and left-traveling states
are physically equivalent. Due to this degeneracy, there
is in the present case another degree of freedom leading
to a physically different state. Indeed, one can imagine
that each lamella would, somehow, maintain its identity
such that one of them chooses a right-traveling state
while the other chooses a left-traveling one. This is what
the new solution consists of. Since both lamellae are
pointing in opposite directions, the drift velocity of the
pattern—or equivalently the tilt angle—is smaller than
that of the old solution. The old branch merges close to
the lower fold (see later) discovered previously [20], while
the new one does so close to the upper fold. In other
words the mother states for both solutions are different.
There is thus no true bi-criticality, and therefore we shall
often use the denomination pseudobicriticality. This is
taken to mean that both solutions appear at the same
critical point (e.g., the same velocity) but their basic
states are distinguishable.

Close to the same pseudobicritical point we shall write
down a general Landau equation, the tilt angle being the
order parameter. We shall see that the new branch is
metastable (in the variational formulation that is possible
close to criticality). The new branch also has a higher
undercooling. Thus both criteria (the conventional un-
dercooling one and the kinetic one based on the
Lyapunov function) are in favor of the old branch. We
shall argue here that existence of the new state should
not, however, be devoid of experimental testability. We
propose an experimental protocol to have access to the
new branch.

The first part of the numerical investigations of this pa-
per was motivated by some results obtained within a
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random-walk model devised by Karma [15]. His work
dealt with a situation where the two solid phases have ex-
actly the same properties (we shall use the symmetric sys-
tem denomination throughout this paper). One of his re-
sults was that the tilting instability should exist for off-
eutectic compositions only. To the contrary, we find that
the eutectic point does not play a special role for parity
breaking. This also agrees with our previous analytic
work [22]. The second part of the question concerning
the symmetric system pertains to the development of the
new branch when one goes from an asymmetric system to
a symmetric one. From symmetry arguments, the new
branch should correspond to a front structure, where
each lamella is asymmetric with respect to its center and
is a mirror image of the other lamella. This is what we
find. It should be mentioned that in this (very special)
case, as we shall see, it is hard to speak of a pseudobicriti-
cal transition since the critical points of the two branches
have a few percent difference. This new structure is rem-
iniscent of the so-called anomalous cells observed in
noneutectic systems [34-36]. Following the spirit of our
previous analytic treatment [22] for parity breaking, we
have constructed an analytic theory to account for the
transition to the anomalous state. We find that the ana-
lytic treatment captures the essential qualitative features.

This paper is organized as follows. In Sec. II we write
down the basic equations and briefly recall the numerical
strategy. We then present and discuss “‘exact” numerical
results for the symmetric and asymmetric systems. In
Sec. III we describe the pseudobicriticality by means of a
Landau theory and suggest an experimental protocol to
have access to the new branch. Section IV is devoted to
the analytic theory accounting for the transition to the
anomalous state. Section V contains a discussion of the
results and a general outlook.

II. BASIC EQUATIONS
AND NUMERICAL RESULTS

A. Mathematical description

The directional solidification setup used to investigate
lamellar eutectics (and other systems) has been described
in our earlier work [19]. Essentially, the specimen is
pulled at constant speed ¥ between two thermal contacts,
moving from the hot to the cold one. A constant temper-
ature gradient G can be established by appropriate exper-
imental conditions. The model equations have also been
discussed previously, both for the cases of symmetric [19]
and nonsymmetric [20,21] patterns. Therefore, we shall
simply recall them in their most useful form without
dwelling on details. The diffusion equation for the nor-
malized concentration field u,

u=(c—c,)/Ac , (2.1

is cast into the form of an integral equation:

fFSIdI"'g(r,r’)

qu _ ' -
a7 = Jr ATA(5E)

Xlulr')—uy,]. (2.2)

For the definitions of the miscibility gap Ac and the eu-
tectic concentration c,, see the phase diagram given in
Fig. 1. The Green’s function g(r,r’) of the stationary
diffusion equation, in a frame attached to the interface, is
given by

P

e —(Az+Ax tan¢)/lK
I cos¢

g(r,r’)=ﬁ i (2.3)

where Ax=x—x', Az=z—z', p=V Ax?*+Az?% and
r=(x,z). K, is the modified Bessel function of zeroth or-
der. The tilt angle ¢ appears here because it determines
the lateral velocity of the pattern (¥, =V tan¢). Fur-
thermore,

|
h(r,r’;n’)=2 e —(Az+Ax tang)/I

T
—(n'+n’ P
X | —(n,+n,tang)K Toosd
_n'(r'—r) P TV
pcos¢ ' |1cose e,
(2.4)

and K| is the modified Bessel function of first order. The
8 function refers to a contour integral, not to a two-
dimensional integral. Global mass conservation implies a
sum rule for A(r,r’;n’) which has been discussed in some
detail in Ref. [20].

Equation (2.2) is an integro-differential equation for the
interface position {(x), since both u and du /dn can be
expressed via {(x) and its derivatives in a stationary situ-
ation. This is accomplished with the help of the Gibbs-
Thomson and Stefan conditions, which read

—C&/If—dgk, a phase

u ]imerface= é‘/l?"‘dgK, B phase , (2.5)
T L
Te X Lj__oi__ __L__i_-ﬁ ﬁ
| | |
| | |
| | |
| | |
Cq Ce 013 C
Ac

FIG. 1. Phase diagram of binary eutectic system. T is the
temperature, ¢ the concentration of one component. The re-
gions L, o, and B correspond to one-phase equilibrium states of
the liquid, the solid «, and the solid B phases, respectively.
L+a and L+ are regions of two-phase equilibrium between
the liquid and one solid phase; the true concentrations of the
two phases are given by the liquidus and solidus lines (solid
lines) delimiting these regions. c,, c,, and cg denote the equilib-
rium concentrations of the liquid and the two solid phases at the
triple or eutectic point, whose temperature is 7,. Ac is the mis-
cibility gap: Ac=cg—c,.
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FIG. 2. Definition of the contact angles ¢, and 4, and the
tilt angle ¢. Note that ¢ is counted positive for a tilt to the
right, while 4, and Jg are always positive.

[(l_ka)u +8]vn, a phase
interface= [(l_kﬁ)u+8_l]vn, ﬁphase .

Here d§ and d§ are the capillary lengths for the two solid
phases [19], « is the interface curvature, /7 and / ‘TS' are the
thermal lengths, D is the diffusion coefficient in the
liquid, k, and kg are the partition coefficients, and
8=(c,—c,)/Ac is the reduced miscibility gap for the a
phase. The steady-state normal velocity v, in the con-
tinuity equation (2.6) has a simple dependence on the in-
terface shape

v, =V(1—tang&, N(1+E2)7 172,

_pdu

2.6
an (2.6)

(2.7)

A final boundary condition is given by the requirement of
mechanical equilibrium at the triple points, which deter-
mines the contact angles 3, and ¥4 at the triple points
(see Fig. 2):

YaSin(d,+ @)+ ygsin(dgtd) =y ,gcosé , 2.8)
2.8
Y a1€08(F, F @) —vygcos(Fgtd) ==Ly ,zsind .

B. Numerical results

The numerical method to solve the integral equation
(2.2) has been described in Ref. [19] for the symmetric
case. There are some subtleties in finding asymmetric
solutions, but we refrain from entering into these details
(which have not been given elsewhere) to keep this paper
concise.

To put our results in context, let us recall the structure
of solution space for stationary lamellar growth [19,20].
It is summarized in Fig. 3, which shows the average un-
dercooling as a function of the lamellar spacing at a fixed
velocity. At small A, we have four branches of axisym-
metric solutions, which pairwise merge into fold singular-
ities at roughly twice the wavelength corresponding to
the minimum undercooling of the lowest branch. That is,
we have a discrete set of solutions for each wavelength. It
seems likely in the light of our knowledge about dendritic
growth, where also a discrete solution set exists (which is
infinite), that these four branches constitute only the be-
ginning of an infinite ladder of solutions. Within numeri-
cal accuracy, it is hard to decide whether the fold singu-
larities of the two pairs appear at exactly the same wave-
length or not. Beyond the folds, no solutions with sym-
metric lamellae exist.
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FIG. 3. Average undercooling as a function of A for four
branches of axisymmetric solutions to the model equations
(squares, inverted triangles and triangles, and circles) and two
branches of tilted solutions (stars, crosses). The symmetric
branches form two pairs, whose members coalesce into fold
singularities at A=~0.0158. Beyond this A value, no axisym-
metric solutions could be found. ¥=10.0, material parameters:
d§=df=10"°%k,=1.04, k,=1.04, u,=0.05, 8=0.3,
#,=0.9, and 35=0.7. A similar structure, but with a subcriti-
cal upper tilted branch, was found for ¥=27.5, d§=2X10"73,
and d§=5X107°

The branch (characterized by stars in the figure) that
bifurcates from the lowest symmetric branch and extends
to wavelengths beyond the fold is also known from our
previous work [19,20]. It consists of tilted solutions with
globally broken parity. An example of a pattern from
this branch is shown in Fig. 4. Note that the branch is
twofold degenerate, since solutions tilted to the left and
to the right have exactly the same undercooling, in a sys-
tem with isotropic surface tension. We have verified that
anisotropy removes this degeneracy [13], making it mani-
fest that this branch actually consists of two.

Finally, the upper branch extending beyond the fold
(denoted by crosses) is new. The characterization and
discussion of solutions leading to this particular branch is
the main purpose of this paper. Figure 5 shows a pattern
from this branch, at the same wavelength that was con-
sidered in Fig. 4. Note that the lamellae of the a and 8
phases look as if they belonged to structures with oppo-
site tilt orientations. This will become much more con-
spicuous in the case of a symmetric phase diagram con-
sidered below. Again, the branch is twofold degenerate,
comprising solutions which can be obtained from each
other by reflection with respect to the original symmetry
axes.

The most appropriate (or fundamental) order parame-
ter for these structures would be an amplitude of their
antisymmetric part with respect to an axis in the middle
of a lamella [30]. It might be calculated by integrating
the square of the antisymmetric part over a period of the
system. More easily calculated—and visualized—is the
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FIG. 4. Tilted pattern from the lower branch of Fig. 3.
A=0.02, $=49.0°.

tilt angle, which in many cases may serve as an order pa-
rameter, too. The anomalous state (which appears in the
case of symmetric eutectic systems) does not exhibit a tilt.
Therefore, one has to describe its bifurcation by another
quantity. One simple way is to use the height difference
between the two triple points to the left and the right of,
say, an a lamella. Both the tilt angle and the height
difference are zero when each lamella is symmetric with
respect to its center (the usual symmetric growth mode).

Figure 6 shows the tilt angle for the two broken-parity
branches of Fig. 3. A few things should be noticed.
First, the bifurcation appears at almost the same point
and is supercritical for both branches. Second, the tilt
angle of the upper branch is smaller than that of the
lower one. Third, it does not increase monotonously as a
function of A in the whole range of A values considered
but decreases again at large A.

As to the first point, our numerical accuracy does not
permit a statement whether this is a case of “exact pseu-
dobicriticality” (as explained before, we use the term
pseudobicriticality to distinguish from true bicriticality,
where both solutions have the same basic symmetric pat-
tern). From our results for a symmetric phase diagram to
be discussed below, this does not seem very likely, be-
cause there the difference between the two critical points
is too large to be solely due to insufficient numerical accu-
racy (it is a five-percent effect, and our numerical resolu-
tion is on the order of one percent or better). On the oth-

9=20.1°
1 1 | 1
—0.5 — -
—-1.0 -
~<
~
N —-1.5 — —
—-2.0 —
[ ) I
-1 [¢] 1 2

x/\

FIG. 5. Anomalous parity-breaking pattern from the upper
branch of Fig. 3. A=0.02, $=20.1°.
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FIG. 6. Tilt angle as a function of lamella spacing for the two
broken-parity branches of Fig. 3.

er hand, another case of an asymmetric phase diagram,
with parameters very different from those of Fig. 3 (see
the figure caption), again shows pseudobicriticality to
within one to two percent of the wavelength, so that the
symmetric case may be special in this respect. We con-
jecture that the bifurcation may be considered pseudobi-
critical for all practical purposes if the phase diagram is
nonsymmetric. As to the type of bifurcation, by which
the upper tilted branch appears, this normally seems to be
supercritical. We have seen a case of a slightly subcriti-
cal bifurcation for rather asymmetric system parameters
(including different capillary lengths of the two phases).

The second of the aforementioned points will be dis-
cussed below. Regarding the third, shortly after the tilt
angle starts to decrease, i.e., for A values above
A=0.0205 [37], we do not find solutions anymore. Since
it seems rather unlikely that the branch just ends there
(without turning backward), it is tempting to conjecture
that the persistent failure of convergence of the Newton
solver (which is independent of the discretization mesh) is
a signature of a new bifurcation. Such an interpretation
is supported by past experience with the behavior of the
iterative solver in the vicinity of bifurcations. However,
without a good guess at the interface shape of the bifur-
cating solution it is hard to verify this conjecture.

Let us now turn to the symmetric phase diagram. Its
bifurcation structure, evaluated for ¢, =c, and given in
Fig. 7, has not been discussed before. As was stated in
Ref. [19], the competition between the effective interface
stiffnesses of the a and 8 phases must lead to a qualitative
change in the bifurcation diagram when the two phases
become equivalent. Two out of the four axisymmetric
branches become degenerate, so there appear to be only
three branches. Plotted are, however, four—one of them
as triangles with tip up, another with tip down. Their
overlapping produces nice sixfold stars, even though the
symmetry between the two phases has not explicitly been
exploited in the numerical solution.

It is also this symmetry that is responsible for the fact
that the solutions corresponding to the upper branch that
extends beyond the fold singularity are not tilted. Figure
8 gives a pattern from the lower branch of ordinary tilted
solutions, Fig. 9 one from the mentioned upper branch, at
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FIG. 7. The same as Fig. 3, but for a symmetric phase dia-
gram and otherwise symmetric parameters: d§=d 8=10"5,
ko=kg=1, 8,=39;=0.8, If=I[f=1, V=10.0, u,=0, and
8=0.5.

the same wavelength. In this symmetric case, for which
an analytic treatment will be given below, the bifurcation
to the upper branch is of standard supercritical type.

It is noteworthy that the parity-breaking bifurcation is
still present in the fully symmetric system (see Fig. 8).
This contrasts with Karma’s [15] random-walker model,
according to which the tilting instability appears only for
off-eutectic composition. Of course, we cannot exclude
the possibility that in the symmetric system the tilted pat-
tern becomes unstable against hard mode instabilities,
and that therefore it could not be captured in Karma’s
simulation. In order to make a definite statement one
needs to perform a full linear stability analysis in all
cases. There are, however, some remarks which should
be made. First, in our analysis we have not seen that be-
ing at the eutectic concentration gives rise to any special
event. Second, both numerically and analytically the
symmetric system is found to support broken-parity solu-
tions in a very similar manner as the nonsymmetric sys-
tem. Third, tilted patterns manifest themselves in experi-
mental situations as a robust feature. It is hard to imag-
ine physically why this feature should disappear for the
symmetric system. Moreover, as this paper was being
written we received results of Monte Carlo simulations by

9=54.1°
! L L 1

—0.5 — —

1.0 =

z/\

—-1.5 — —

X/
FIG. 8. Parity-breaking pattern from the lower branch of

Fig. 7. The phase diagram is symmetric and the composition is
that of the eutectic point (uz,, =0). A=0.02, ¢=54.1°.

branch of Fig. 7. A=0.02, ¢=0.

Xiao, Alexander, and Rosenberger [38], who found that
the tilting instability exists for completely symmetric sys-
tems, thus confirming our results.

Let us pursue the discussion of our results in the sym-
metric system. While the pattern of Fig. 9 cannot be
characterized by a nonzero tilt angle, it definitely has lost
axisymmetry with respect to the central axis of each sin-
gle lamella [39]. That is, we have local parity breaking.
Note that we can describe each of the branches by one of
the simple order parameters introduced above, but that
the other is zero. Furthermore, it is difficult to speak of
the same critical point, since the bifurcation points of the
two branches are roughly six percent of the wavelength
apart.

It is amusing to note that solutions corresponding to
this upper branch can be found in a JH-type theory of the
simplest kind. By “simplest kind”> we mean that, accord-
ing to the original idea by JH, the diffusion field is re-
placed with that of a planar interface. Inserting this
diffusion field in the left-hand side of Eq. (2.5), one has,
instead of an integral equation, two second-order ordi-
nary differential equations

bxx 5.—=e,.u(x,§(x>),

do——555— 2.9
Ca+er I 29

i=a,B,

where €,=1 and €= —1. The simplification arises be-

—-0.5 —
~<
~
N
| | I | T
-0.5 0.0 0.5 1.0 1.5
x/\
FIG. 10. Anomalous parity-breaking pattern from a

Jackson-Hunt-type theory with planar front diffusion field.
A=0.02, $=0.



48 NEW BROKEN-PARITY STATE AND A TRANSITION TO . .. 1097

cause the (now) right-hand side is a known function. Or-
dinarily, one even replaces the function {(x) on the
right-hand side by the position Z of the planar interface,
which means dropping the z dependence of the diffusion
field (this was also the approximation used in Ref. [19]).
Let us call this the first type of a JH theory of the sim-
plest kind. The second type then consists in carrying
along the {(x) on the right-hand side, and it is this type
that has solutions exhibiting local parity breaking. An
example is given in Fig. 10. In Sec. IV we will develop an
analytic theory to account for the transition to the anom-
alous state, within a more refined theory of the JH type
(which is no longer of the simplest kind).

III. PHENOMENOLOGY OF PSEUDO-
BICRITICALITY AND EXPERIMENTAL ACCESS
TO THE NEW BRANCH

In this section we would like to present a phenomeno-
logical discussion of the (pseudo)bicritical feature of the
broken-parity state. We will also suggest an experimental
procedure to realize the new state.

We have seen in the last section that at the critical
point two broken-parity solutions merge in a (normally)
supercritical manner. If one concentrates on one branch
only (say the old one), the normal form of the Landau ex-
pansion compatible with symmetries reads to leading or-
der for the orderlike parameter ¢

Tl¢.=.u'¢_a1¢3 >

where p stands for the bifurcation parameter (it vanishes
at the bifurcation point), a is the Landau constant, as-
sumed to be positive to account for a supercritical bifur-
cation, and 7 is some time scale for the motion of interest.
As we are interested in homogeneous parity-breaking bi-
furcations, there is no need to include a term describing
wall effects. The second solution merging at the same
point is described by a similar normal form

(3.1

rb=pp—ap* . (3.2)

Since the new branch has a smaller tilt angle (see Fig. 6),
we have a, > a;.

An interesting feature of the Landau expansion for a
stationary bifurcation is that it can be cast into a varia-
tional formulation

d

T,-¢=”‘£Fi , (3.3)
where
Fi(¢)=—1u¢*+1la;¢*, i=12. (3.4)

The quantity F can be thought of as the kinetic analogue
of a thermodynamical potential. More precisely, the evo-
lution equation for F; is

oF; _aF,.qu__ 1
ot 9 A

JF,
a¢

where use has been made of Eq. (3.3). This result means
that the function F is a nonincreasing function of time.

<0, (3.5)

This is the Lyapunov function. As a consequence, we ex-
pect the system to evolve towards the state that mini-
mizes the Lyapunov function. The two stationary solu-
tions of Egs. (3.1) and (3.2) are given by

$1=(u/a)'?, =(u/ay)'"?, (3.6)

not counting the negative solutions. The Lyapunov func-
tion has the following values for these solutions:
2 2
F=—*%— Fp=—4£_ 3.7)
2a1 20!2

Since a, > o, one has F, > F; i.e., the second branch has
a higher “energy,” or, in other words, is metastable. This
simple phenomenology shows us that the old branch is
more favorable than the new one. It is worth mentioning,
however, that comparing the ‘“free energies” is somehow
misleading in the frame of deterministic dynamics.
Indeed, the final state should depend on initial conditions
only and not on comparing various ‘“energies.” Of
course, fluctuations, which are not accounted for, may
change such a conclusion. There are, however, some in-
dications on the way by which to prepare a system,
confirmed by experimental observations, to have access
to such or such a state. Some of these questions will be
discussed below.

As shown in Fig. 3 the new tilted branch (crosses) has a
higher undercooling than the old one (stars). There exists
agreement in the metallurgical literature that out of two
possible states a system chooses the one which corre-
sponds to the smaller undercooling. This criterion is also
in favor of the old branch, since it has a lower undercool-
ing.

Of course, the absolute minimum in Fig. 3 corresponds
to a symmetric state and one would expect—with the
proviso one admits the minimum undercooling
principle—that state to prevail always. This is not yet
clear, however. Indeed, according to one of our previous
analyses [20] we have proposed how to destabilize the
whole symmetric front against parity breaking, a sugges-
tion which has found an impressive experimental
confirmation [27]. This consisted simply in a sudden in-
crease of the pulling speed by a factor of about 4. Indeed,
since the quantity A’V is approximately a constant of
motion, a sudden jump of ¥ by a factor of 4 would imply
a reduction of the wavelength by a factor of 2, in a situa-
tion where the response of the periodic structure is in-
stantaneous. This is not the case. Indeed, the wave-
length adjustment is a very slow process (at least of the
order of many minutes or even an hour) so that the front
would temporarily “feel” that for the actual velocity the
wavelength is twice too large. Our analysis tells us that
in such a situation the front should undergo a parity-
breaking bifurcation. This is what the experiment has
indeed shown.

In the absence of a full linear stability analysis of the
tilted pattern we cannot exclude the possibility that the
asymmetric pattern is a transient and after some time the
system would go back to the symmetric state. For such a
process to be operative the wavelength should be approx-
imately halved. Such a wavelength reduction occurs ba-
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sically via phase diffusion, expressing the Eckhaus insta-
bility. This mechanism seems extremely slow so that for
a given experiment, once the tilted pattern takes place,
there is no chance to observe a transition back to the
symmetric state, except after a strong variation of the
growth velocity (by suddenly reducing it by a factor of
approximately 4).

Now in the light of the results reported in the present
paper we can legitimately ask the following question:
why does the system choose the lower tilted branch and
not the upper one after a sudden velocity increase? The
answer is quite clear. Figure 11 schematically shows the
situation. ¥, designates the original velocity, while
V,=4V,. S| denotes the representative point of the sym-
metric state at ¥, (this point is close to the minimum un-
dercooling point). If the velocity change were slow
enough, going adiabatically from V,; to V, =4V, then
the final state would have S, as a representative point;
that is to say, the state would be a symmetric pattern at
the minimum undercooling corresponding to V=V,. If,
on the contrary, the velocity jump is sudden, going from
V, to V,, then temporarily the wavelength will still be
Aimin- For the solid to grow in a stationary manner at
this couple (¥,,A nin), the undercooling should adapt it-
self such that now the representing point is Sj. Our
theory tells us that point S is close to the instability
against parity-breaking fluctuations. Then the symmetric
pattern loses its stability and a tilted pattern develops. It
should be added that since parity breaking is a normal bi-
furcation, the growth of the asymmetric perturbation is
exponentially fast, while wavelength adjustment is of the
diffusive type and is very slow compared to the birth of
the broken-parity state. Thus by this process one is natu-
rally led to the lower branch of broken-parity states.
This is what the experiment of Faivre and Mergy [27] has
confirmed.

How to get to the upper branch? A simple experimen-
tal protocol would be the following. Once the front has
reached the lower broken-parity branch at S| (as de-
scribed above), one should, keeping the same pulling
speed, undercool the front in a controlled way to reach

o
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FIG. 11. Schematic plot describing the representative points
of different states that are reached by the system depending on
the experimental protocol (see text).
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the point S} in Fig. 11. Figure 3 shows that close to the
critical point for the birth of tilted states the upper
branch has an undercooling which is approximately 1.5
times that of the lower branch: the average front position
for the lower branch is about 0.013 in the chosen units
(see [37] [—(&)=(AT)/G)), while that of the upper
branch is about 0.019. Thus, knowing approximately the
absolute temperature of the front in the lower branch and
the eutectic temperature, we obtain the undercooling in
degrees as their difference and can then determine the
temperature of the upper branch via an increase of the
temperature difference by a factor of 1.5.

The method by which the front can temporarily be un-
dercooled down to the upper-branch temperature may be
the following. Heating locally along, and close enough
to, the front, for example by a laser source, would cause
melting resulting into a recession of the front towards the
cold contact. If the laser pulse is localized enough so that
the heat produced can equilibrate very fast with the envi-
ronment, it should put the system temporarily in a higher
undercooling. Indeed, the front which had receded to-
wards the cold contact (due to melting) may still be in a
transient state with a temperature below the melting tem-
perature imposed by the hot and cold contacts. If the in-
crease of the undercooling is large enough we expect the
new state to manifest itself. Another interesting possibili-
ty to undercool the front should be provided by the ex-
perimental setup of Oswald [40]. The sample there is, be-
sides the usual thermal contacts, supported by a thin me-
tallic plate (actually a metallic deposit) where electric
currents are used to heat the sample. The metallic plate
reaches thermal equilibrium with the environment faster
than the sample itself, so that the front can, temporarily,
be significantly undercooled after sudden removal of the
electric power.

We believe that the above suggested protocols should
constitute important tools towards the understanding of
the variety of the fascinating patterns in eutectic growth.
Besides the access to the upper branch of the tilted state,
the same protocol can be used to investigate the existence
of higher branches of symmetric patterns that are exhib-
ited on Fig. 3. In this situation one should start from a
symmetric pattern and suddenly undercool the front. By
looking to Fig. 3, it is a simple matter to estimate the
front temperature associated with each branch.

IV. ANALYTIC TREATMENT FOR TRANSITION
TO THE ANOMALOUS STATE

We have seen from our full numerical results that in
the particular case where both solid phases are identical,
the upper broken-parity state branch corresponds to un-
tilted asymmetric solutions, the so-called anomalous
states. We would like to develop here an analytic treat-
ment accounting for the transition to the anomalous
state. We will adopt the same spirit as the one used for
the parity-breaking transition in Ref. [22]. There we
have considered the simplest next step of analysis beyond
that of JH. In order to determine the diffusion field, we
have included an antisymmetric component in the front
profile. This treatment has proven to be fruitful since we
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recovered the essential features of parity breaking found
numerically. This gives a strong hint that a similar treat-
ment, which would consist in including a local asym-
metry in the front profile, should capture the main
features of the transition to the anomalous state.

We consider here the same standard simplifications as
those used in Sec. II. But, since our aim is to deal with
the transition to the anomalous state, we will, because of
the very nature of the state we want to investigate, look
at symmetric eutectic systems. Furthermore, we shall as-
sume that the system grows in an isothermal environ-
ment. This assumption is legitimate, since in standard
directional eutectic growth experiments the thermal
length is much larger than the wavelength of the pattern.
We will also assume that the concentration gap for each
phase (i.e., cZ—c; and c®—c,) is constant. This means in
our notation that the partition coefficients k, and kg will
be both taken equal to 1.

For clarity, we rewrite the growth equations in the
present context. Since we are interested in the transition
to the anomalous state, the tilt angle is zero. The
diffusion equation then becomes (taking the diffusion
length as length unit)

V2u +2u,=0 . @.1)

Using the fact that both solid phases are identical (i.e.,
d3=df=d, and §=1) and that k,=kg=1, the Gibbs-
Thomson and conservation conditions at the interface
z={(x) take the following form (with D =1):

u=+(A—dk) , 4.2)

u,—&,u,=F1. (4.3)

The upper and lower signs refer to the solid phase with
the lower and the higher concentrations, respectively.

In the situation where the solid grows in an isothermal
environment, A designates the dimensionless undercool-
ing [A=(T,—T,)/mAc, where T, is the temperature in
which the solid evolves]. In directional growth, A should
be replaced by —&/I;. However, for all practical pur-
poses we can write £ /Iy ~E /Iy, which simply means that
the front can be viewed to be, practically, in an iso-
thermal environment. This is justified by the fact that the
front excursion, which is of the order of A, is much small-
er than the thermal length (I;~1 while A~10"2; recall
that both quantities are measured in the unit of the
diffusion length). To sum up, in the case of directional
growth A can be thought of as a measure of the average
position. To complete our set of equations we should
write down the mechanical equilibrium conditions at the
triple points where the three phases intersect:

. (0)=tan(8), {,.(A/2)=—tan(0), (4.4)
where 0 is the contact angle at the triple point.

To determine the diffusion field for axisymmetric
states, Jackson and Hunt assume a planar front. That is,
they solve Eq. (4.1) subject to condition (4.3) at {=¢,
u,(£)=F 1. Here we use a strategy analogous to that
employed in [22] in the context of parity breaking. It
consists in replacing the actual diffusion field by that of a
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lamellar structure, whose front is made of straight seg-
ments (to be defined below). The main characteristic of
the anomalous states is that two consecutive triple points
of the front are not at the same height. So the ansatz
consists of assuming that the interface over one period
consists of four straight segments defined by

—y70+x tanf, 0=x =x, 4.5)
f2)—&= y

7°+(A/2—x)tan9, xo<x<A/2)  (4.6)
for the a-liquid interface and by

y70+(x—k/2)tan6, A2Sx<h—x, &.7)
§x)—¢= y

——o+(k—x)tan9, A—xy<x=<A 4.8)

2

for the B-liquid interface. The quantity y, is the height
difference between two consecutive triple points (see Fig.
12), and x, and A—x are the positions of the two inter-
section points [x,=A/4+y,/(2tanf)]. Note that the
triple points sit at a height of +y,/2 (measured from the
reference position £). This choice is made in order to
keep the symmetry between a solution with height
difference y, and one with —y, [see the remark below
after Eq. (4.25)]. This profile has the property that each
lamella is asymmetric with respect to its center and is a
mirror image of the other lamella. Note also that this
front profile satisfies the mechanical equilibrium condi-
tion [Eq. (4.4)].

The main part of the work is to determine the diffusion
field corresponding to the front defined above. We can
write the general solution of the stationary diffusion
equation [Eq. (4.1)] for a spatially periodic system as

ik,x —Q, (z—¢)

u(x,z)=3 C,e "e , 4.9)

where k,=2mn/A, Q,=1+1 1+k2, and C, are un-
determined coefficients for the moment. In the (standard)

FIG. 12. Scheme of the front used to determine the diffusion
field.
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small-Péclet-number limit Q, ~|k,| for n#0 (Q,=2).
Both in Refs. [11] and [19], £ has been considered the
average interface position. However, taking ¢ larger than
the minimum interface position £, and evaluating the
C, for {=¢ would lead to a Fourier series, which
diverges for § <¢, spoiling the general validity of the an-
satz. For a planar front, §;, is identical to the average
interface position (£) and the reference position £
defined above. Since we will expand about the Jackson-
Hunt solution in the following, we can identify £ and £.
The coefficients C, are obtained from the continuity
equation (4.3). But in its actual form, it is difficult to ex-
ploit because all the quantities involved in this equation
have to be evaluated along the front. Our procedure is to
determine the diffusion field to leading order in the devia-
tion from a JH theory. This is to say that we expand the
continuity equation in the front deviation {—¢ and, since
this quantity is of the order of Péclet number, the remain-
ing terms would produce higher-order contributions in

lamella, for example, the form

u,=—(—uO+¢ ul¥—1, (4.10)

where the fields on both sides are understood to be evalu-
ated at z=CE. The quantity u‘? refers to the JH field and
its expression is given by

u'x,z)= > Bneik"xe'Q"(rg), 4.11)
n (#0)
where
4e—in7r/2 .
B =—— 2). 4.12
"SIk, sin(n/2) (4.12)

One can now obtain the coefficients C, by inserting
(4.9) into the continuity equation (4.10). After lengthy
algebra, this procedure yields

° c,=cV+c?+cl®, (4.13)
the Péclet number.
To leading order, the continuity equation takes, in an a with
J
2i
= —=—[1—(—1)" 4.14
n "0, k, [1—(—=D"], ( )
(2) 2B,
C, =_kQ tan(6)[1—cos(2k,x)]
1 1 I+(=nm"
A0, %" 4k,, B, tan(0) Kk, —k, cos[(k,, —k,)xq] > ]
(m>0,m+n)
B ik cos[(km+kn)xo]—7l+(_21) H (4.15)
2
Q.B,
C,(,3)=-—Ttan(9) x3+ 5 %o +%[1—cos(2k,,x0)]
1 2 1 1+(—1""
- 4Q7 B, tan(6) cos[(k,, —k,)xg] ———————
AQn % m_kn )2 0 2
(m>0,m#*n)
1 1+(=n""
————— |cos[(k,, tk,)xq] ———————— (4.16)
TR o] 2 ]
Making use of the expression of the coefficients B,,, we can rewrite the diffusion field at z=¢ in a much more compact
form:
u(x)= 3 D,sin Zmnx ) (4.17)
n (>0) A
with
2A o« 1—(—1)"cos(4mmy)
D,, =——————4Atan(0)
ol 2o —1)2 mzzl mm[4m?—(2n —1)?]
A "l 1—(—1)"cos(4mmy) 8Ay?
+— +2A tan(0) , 4.18
27r(2n—1)tan(9) ’tan(@)mZ:1 Pmiam—(2n—1)] | m2n—1) an(6) (4.18)
D,, =8\ tan(6) S (—1)"sin[27(2m — 1)y ] 4.19)

= Pem—1)2m—2n—1)2m+2n—1) ’
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where y =y,/(2A tanf). Note that D,, ; and D,, are
even and odd analytic functions of y, respectively.

Our analytic treatment can be pursued much further.
Before proceeding further, some remarks are in order.
Having obtained the diffusion field, we can in principle
solve for the front profile, which is compatible with that
field. For that purpose we should insert the expression of
the diffusion field [Eq. (4.17)] into the Gibbs-Thomson
equation [Eq. (4.2)]. The determination of the front
profile then amounts to solving a nonlinear differential
equation subject to the mechanical boundary conditions
[Eq. (4.4)]. Using the expression of the curvature, (4.2)
reads

gXX

dy——57 4.20
(14827 420

+A=xulx,y,) ,

where y, has been put explicitly in the argument of the
diffusion field to remind us that u is parametrized by y,.
The integration of this second-order equation over a
half-period requires the determination of two integration
constants, which are furnished by the two boundary con-
ditions on the slope §, at the triple point. At that stage
Yo would still be undetermined. So it seems as if the
present problem could be solved for arbitrary values of
Yo, since we have made no assumption on y,. This is, for-
tunately, not the case. For the self-consistency of the
problem, we have to impose, in addition to mechanical
equilibrium, that the two ends on a given lamella [e.g.,
£(0) and &(A/2)] of the front profile which solves (4.2)
subject to (4.4) must have a height difference equal to y,.
This additional condition can be written simply as

§(A/2,y0)—E(0,y0)=Yy ,

where again we put y, explicitly in the argument, for the
same reasons we mentioned above.

The above equation is sort of a nonlinear eigenvalue
problem of the Barenblat-Zeldovich type. It leads generi-
cally to the selection of a discrete set of y, values. The
quantity y, can be thought of as an order parameter for
the anomalous state. Indeed, in the usual symmetric
state y, =0, while anomalous states are characterized by
nonzero values of y.

Let us now come back to the analytic analysis of the bi-
furcation. In order to determine the bifurcation point
where the axisymmetric state undergoes a local parity-
breaking transition (characterized by a nonzero value of
Yo)» we need to determine whether Eq. (4.21) is satisfied
for a nontrivial value of y,. The procedure is as follows.
Equation (4.2) can be integrated once over x (from O to x,
where we make use of the mechanical equilibrium condi-
tion at x =0). It gives

(4.21)

gx . x
—————=sin(0)+ fo

V1+&

u—A
do

dx=f(x) . (4.22)

The slope §, can be expressed as a function of f, and a
second integration over a half-period can be achieved to
obtain
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f(x)

g(/x/z,yo)—§<o,yo)=fom‘/l_f2

dx EF(yO:Knu) ’

(4.23)

where p stands for the material and control parameters
(e.g., dy, 6, and I). Finally, the self-consistency equation
(4.21) can be written as follows:

F(yg,Apn)=yq - (4.24)

This equation is a general expression for the parameter y,
as function of the other parameters. Before exploiting it,
let us derive the equation that relates the undercooling to
the other parameters. For that purpose we average Eq.
(4.2) over one period (actually over a half-period, because
the two solid phases are identical). The result is

D2n—1

4d,,
m(2n—1) °

A=k

sin()+2 3

n=1

(4.25)

Equations (4.24) and (4.25) are general expressions which
determine y, and A as a function of the other parameters.

One can easily check that A(—y,)=A(y,), as it should
be. One understands readily that the undercooling has to
be an even function, because the anomalous states associ-
ated with opposite values of the order parameter are
identical: they are deduced from each other by a transla-
tion of a half-period. One finds also that F, as it should
be, has a well-defined parity, F(—y,)=—F(y,), but the
verification is not straightforward (see the Appendix).
Using the parity of F, we can see that for an axisym-
metric state (i.e., yo,=0) the self-consistency relation is al-
ways satisfied [F(y,=0)=0].

In order to investigate the possibility for the symmetric
front to undergo a transition to the anomalous state, we
have to find for which values of the parameters A and u
the self-consistency relation is satisfied for a nontrivial
value of the order parameter y,. This can be done nu-
merically in the general case, but in order to go further in
the analytic treatment, we will first confine ourselves to
small contact angles, where the calculation of the critical
point turns out to be simple. This restriction amounts to
neglecting f? against 1 in the square root appearing in
Eq. (4.23). The justification of this assumption is as fol-
lows. Indeed, if we evaluate the order of magnitude of
the function f in the simple case of the symmetric growth
(i.e., by using the JH diffusion field), we find that
f~A%/(md,). If our model correctly contains the prin-
cipal ingredients we expect the critical wavelength A, to
be of the order of the JH minimum undercooling wave-
length A;, (A, ~2A.:,), as in the full calculation. Using
the expression of A, (A2, ~7dsind), we find that f is
of order sinf. So, for small 6, f should be reasonably
small. In this limit the function F reads

}\,2 » D 2n

F(yoa)\qﬂ):'gt_i;ngl P »

(4.26)

where use has been made of Eq. (4.25). We can write F in
a more usable form:

__ 2Atan(6)

y
F(yO’)‘".u')— 2 £
g

2A tan(9)

) (4.27)
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with
G(y)
=i§ < (—=1)"sin[27(2m —1)y]
P e L Pr2m—1)(2m —2n—1)2m +2n—1)
4.28)

and o?=d,/A\%. The self-consistency relation then be-
comes

G(y)=02y s (4.29)

with y =y, /(2A tan6).

The resolution of this equation can be achieved graphi-
cally. It suffices to determine the intersection point be-
tween the curve G(y) and the set of straight lines
parametrized by their slope o2. As shown in Fig. 13, for
values of o bigger than a certain critical value o, (to be
defined below) there is only a single solution y =0, and
for o <o, in addition to the trivial solution, a second
solution y7#0 appears. When o0 =0, we are in the criti-
cal situation where the straight line is tangent to the
curve G at the point y =0. As a summary, the bifurca-
tion occurs below the critical value o, given by

a
==, (4.30)
o
with
N=2 2 i Gm—2n—Dam+an—1 O
(4.31)

and it is supercritical, since y goes continuously from O to
a nonzero value. The bifurcation diagram is shown in
Fig. 14. The horizontal axis represents o !/2, which
varies linearly with A. In reality, there is also a bifurca-
tion branch in the region where y, is negative. The bifur-
cation curve is symmetric with respect to the horizontal
axis, since G is an odd function of y,. For a given value
of o0 (<0o,=~0.01), there are two anomalous states associ-

-
—
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yo/[2 A tan(v)] x107%

FIG. 13. Curve representing the function G vs y. In addition
are plotted three straight lines with respective slopes o> o2
(dotted line), o>=02 ( dashed line), and 0% < o? (dotted-dashed
line).
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FIG. 14. Bifurcation curve showing the height difference be-
tween two consecutive triple points as a function of o ~!/2,

ated with opposite values of the order parameter y,. Us-
ing the definition of o we can restate the result as follows:
for a given velocity, the initially symmetric solution loses
its stability against ‘“anomalous” fluctuations for
A>2X.=(2d,D /Vo.)?. The tilted variables refer to the
physical ones.

We can compare the critical wavelength A, with the
JH minimum undercooling wavelength A, (which corre-
sponds to the JH symmetric front with the minimum un-
dercooling). We find that A, /A, ~1.5/V'sin(0). This
result means that the parity symmetry is lost at a wave-
length larger than A_;,, that is, in a regime where the
front dynamics are dominated by diffusion. This feature
agrees with the full numerical analysis.

Let us now examine the general case where 6 is not
necessary small. We compute the exact expression of F
[Eq. (4.24)] for given values of the contact angle and solve
numerically the self-consistency equation, which is a sim-
ple nonlinear algebraic equation. For small 6 (6=0.01),
we recover exactly the same bifurcation diagram shown
in Fig. 14. As 0 increases (from 6=0.1 to 0.8), the criti-

0.0 0.5 1.0 1.5

FIG. 15. Ratio of the critical wavelength for the appearance
of the anomalous state to that corresponding to minimum un-
dercooling in the JH theory vs the contact angle in both analyt-
ic (triangles) and full numerical (solid line) cases.
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FIG. 16. Undercooling as a function of A for axisymmetric
states (solid line) and anomalous states (dashed line).

cal wavelength decreases slightly but the bifurcating
curve does not qualitatively and even quantitatively
change. We can therefore extrapolate the analytic ex-
pression of the ratio A, /A, for a bigger contact angle 0
without committing large errors. In Fig. 15 we have
plotted this ratio as a function of 6 and compare it with
that found from the full numerical calculation. We can
see that the agreement is very good and that for 6=0.8
we find a ratio approximately equal to 2, as in the full cal-
culation.

It is also interesting to know how the undercooling is
modified above the transition to the anomalous state. Us-
ing the obtained bifurcation diagrams, which give y,
versus A, we can perform the calculation of expression
(4.25). The result is given in Fig. 16, which shows both
the undercooling of the symmetric and asymmetric fronts
against the wavelength. We recognize the classical
branch associated with symmetric states. In addition, we
observe a branch emerging from the main one at the criti-
cal wavelength A, determined above. This new branch
corresponds to the existence of anomalous states. We can
also note that the anomalous states are more undercooled
than the symmetric ones for a fixed wavelength. Of
course, this treatment does not account for the fact that
the anomalous state does not merge from the lower sym-

| 1 | |

—-1.0 —
<

N —-1.5 »
_2.0 — —

I T I T T

0.0 0.5 1.0 1.5 2.0

x/A

FIG. 17. A typical anomalous front profile computed for
dy=1075, 3=0.8, I;=1, and y,/A=0.2 in the context of the
analytic theory.
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metric state branch but from the upper one. However,
the increase of the undercooling at the transition seems to
be consistent with the full numerical calculations, which
predict that the anomalous states appear from the upper
symmetric state branch, sitting at higher undercooling.

As we have seen before, the determination of the
profile amounts to solving a nonlinear differential equa-
tion [Eq. (4.2)] subject to a mechanical equilibrium condi-
tion [Eq. (4.4)] and to the self-consistency condition [Eq.
(4.21)]. This problem can easily be solved numerically by
means of a shooting method. Shown in Fig. 17 is a typi-
cal “anomalous” front profile. The morphology of this
state is similar to that found from the full numerical cal-
culation (Fig. 9).

V. CONCLUSION

We have shown from the integral formulation that the
eutectic problem exhibits pseudobicritical features: two
broken-parity states admix simultaneously at the same
critical point as a forward bifurcation. The critical point
is typically located, for a given velocity, at a wavelength
which is approximately twice the one that provides the
minimum undercooling for the symmetric pattern.

In the special situation where both solid phases have
exactly the same physical properties, the new branch cor-
responds to the so-called anomalous solution. Based on
symmetry properties we could easily infer —using our re-
sults on the asymmetric phase diagram—what the new
solution should look like.

The parity-breaking bifurcation is now well understood
both numerically and analytically. Inspired by our work
on parity breaking, we have built up an analytic theory
for the birth of the anomalous branch. We found that the
corresponding bifurcation takes place at a wavelength
which is approximately double that of the minimum un-
dercooling. This branch has a higher undercooling than
the global parity-breaking solution. Our analytic theory
has the important advantage that it is pedestrian in its
spirit but captures the essential features.

We have developed for the (generic) asymmetric phase
diagram a simple phenomenological picture based on
Landau theory to argue that the new branch is less stable
than the old one. This result is consistent with the belief
that systems often select solutions with the smallest un-
dercooling; indeed, the new branch has a higher under-
cooling, and the minimum undercooling principle is
therefore in favor of the old branch. It is not our inten-
tion to pretend that the minimum undercooling principle
should be absolutely operative, but simply that its predic-
tion seems often to be in agreement with observations. It
is very important to note, however, that despite the fact
that the tilted pattern has a higher undercooling, its ex-
perimental observation as an extended state, during a
long time (basically during the full time of the experi-
ment), is now a well-established fact [27].

The experiment in question was based on the (simple)
experimental protocol we had suggested, namely a sud-
den jump of the growth speed by a factor of about 4. We
believe that our suggestion for the experimental protocol,
consisting of “‘quenching” the system in a controlled way,
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should give access not only to the new tilted state but
more generally to the existence of a discrete set of solu-
tions, which we brought out by solving fully the bound-
ary integral equation.

Experiments on eutectic systems, which have already
been impressively successful [27], are, in our opinion, of a
unique type in the pattern formation of crystal growth,
having direct access to a ‘“‘countable” set of solutions,
even those which can be presumed unstable, at least when
one has in mind the minimum undercooling principle. A
major advantage of this system lies in the slow phase
diffusion process, which allows one to impose easily tem-
porarily various wavelengths. This situation, where part
of the theory has already been confirmed by experiments,
contrasts strongly with that of velocity selection in free
dendritic growth, where there has not been to date and,
to our knowledge, a crucial experimental test, a fact
which still sustains a controversy about the theory.
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APPENDIX: DETERMINATION
OF THE PARITY OF F

We would like to check that F is antisymmetric with
respect to y,. So we consider the quantity F(—y,),
which is given by

(x,—yo)
F(—yg)= [ fz—yodx : (A1)
o \/H—f (x,—yo)
with
c (X, —po)—Al—yg)
Fx, —yo)=sino+ [ “ y"d ol ax . (A2
0

Let Y=A/2—X in the expression of f(x,—y,). We

obtain then

(Y,y0)—Alyg)

—xu
flx,—yg)=sino— [ y dy, (A3
0

where we have exploited the symmetry property of the
coefficients D, (which enter the diffusion field definition).
Namely, due to that symmetry we  have
u(X,—yo)=u(Y,yy) and A(—yg)=A(yy).

The strategy now is to split the integral in (A3) into
two parts in the following manner:

. u(Y,yo)—Aygy)
f(x,——yo)=sm9—f:/z%dY
0

. fx/2~x u(Y,yo)—A(yg)

o 4, dy . (A4)

The first integral can easily be evaluated by using the

Gibbs-Thomson relation for the a phase (dogk=u —A).

The result is 2 sin6, so that (A4) takes the following form:
(Y,p0)—Alpo)

—xu
f(x,=yo)=—sin0— fom — = ———dY
0

=—f(A/2—x,y,) .

It suffices now to insert this relation into Eq. (A1) and to
make the last change of variable X =A/2—x to obtain
the desired equality:

(AS5)

fA/2—x,y,)

)
F(_}"o)—“fo ‘/1+f2(k/2_x’yo)dx
:_fk/z f(X,y0)
O VIHFAX,p,)
=—F(yy) .
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